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Abstract. The 1/Nc–expansion of QCD suggests large flavor asymmetries of the polarized antiquark distri-
butions in the nucleon. This is confirmed by model calculations in the large–Nc limit (chiral quark–soliton
model), which give sizable results for ∆ū(x) − ∆d̄(x) and ∆ū(x) + ∆d̄(x) − 2∆s̄(x). We compute the
contributions of these flavor asymmetries to the spin asymmetries in hadron production in semi-inclusive
deep–inelastic scattering. We show that the large flavor asymmetries predicted by the chiral quark–soliton
model are consistent with the recent HERMES data for spin asymmetries in charged hadron production.

1 Introduction

The study of polarized parton distributions in the nucleon
presents a major challenge to both experiment and the-
ory. Particularly subtle issues are the polarized antiquark
distributions, and the precise flavor decomposition of the
polarized quark and antiquark distributions, including the
strangeness contributions. Knowledge of the latter is a pre-
requisite e.g. for the identification of the gluon contribu-
tion to the proton spin [1].

Traditional inclusive lepton scattering experiments,
i.e., measurements of the polarized structure functions,
do not allow to directly distinguish between the polar-
ized quark– and antiquark distributions. Rather, quark–
and antiquark contributions have to be identified from the
study of scaling violations, which implies a considerable
loss of accuracy [2]. Moreover, the flavor decomposition
can only be studied by way of comparing experiments
with different targets, typically proton and light nuclei
(deuteron, helium), which is rendered difficult by nuclear
binding effects. Much more direct access to the individual
quark– and antiquark distributions is possible in polar-
ized semi-inclusive DIS (deep–inelastic scattering), where
one measures e.g. the spin asymmetry of the cross sec-
tion for producing a certain hadron in the fragmentation
of the struck quark or antiquark in the target [3]. Such
measurements have recently been performed by the SMC
[4] and HERMES [5] experiments. The unpolarized quark
and antiquark fragmentation functions needed in the QCD
description of these asymmetries can be measured inde-
pendently in e+e−–annihilation into hadrons [6], and also
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in hadron production in unpolarized DIS off the nucleon
[7,8].

There have also been attempts to estimate the flavor
asymmetry of the polarized antiquark distributions theo-
retically, using models for the structure of the nucleon. A
large flavor asymmetry of the polarized antiquark distri-
bution was first obtained in a calculation of the quark– and
antiquark distributions at a low scale in the large–Nc limit
(Nc is the number of colors), where the nucleon can be de-
scribed as a soliton of an effective chiral theory [9–11]. The
unpolarized quark– and antiquark distributions [9,10,12],
as well as the polarized distributions of quarks plus anti-
quarks [9,10,13] calculated in this approach are in good
agreement with the standard parametrizations obtained
from fits to inclusive DIS data [2]. In the 1/Nc–expansion
the isovector polarized distributions are leading compared
to the isoscalar ones, and calculations in the chiral quark–
soliton model, using standard parameters, give an isovec-
tor antiquark distribution, ∆ū(x) − ∆d̄(x), considerably
larger than the isoscalar one, ∆ū(x)+∆d̄(x). Such a large
polarized antiquark flavor asymmetry should lead to ob-
servable effects in semi-inclusive spin asymmetries as mea-
sured e.g. by the HERMES experiment. It should be noted
that the same approach describes well the observed vio-
lation of the Gottfried sum rule [14–16] and the recent
data for the x–dependence of the flavor asymmetry of the
unpolarized antiquark distribution from Drell–Yan pair
production [17] and semi-inclusive DIS [18], see [12,11,19]
for details.

Recently, the polarized antiquark flavor asymmetry
has been estimated in approaches which generalize the me-
son cloud picture of DIS off the nucleon to the polarized
case [20,21]. It is known that pion exchange contributions
to DIS off the nucleon provide a qualitative explanation
for the observed flavor asymmetry of the unpolarized anti-
quark distribution [22,23]. In [20] the authors considered
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the contribution of polarized rho meson exchange to the
polarized antiquark distributions in the nucleon and ob-
tained an estimate of the flavor asymmetry considerably
smaller than the large–Nc result of [9,10].

In this paper we offer new arguments in favor of a
large flavor asymmetry of the polarized antiquark dis-
tributions. Our main points are two: First, on the the-
oretical side, we comment on the estimates of the polar-
ized flavor asymmetry in the meson exchange picture in
[20,21]. Specifically, we argue that the polarized rho me-
son exchange contributions considered in [20] are not the
dominant contributions within that approach, so that a
small value obtained for this contribution does not imply
smallness of the total polarized antiquark flavor asym-
metry. Second, we study the implications of the flavor
asymmetry of the polarized antiquark distributions for
the spin asymmetries measured in hadron production in
semi-inclusive DIS. Combining information on the polar-
ized quark and antiquark distributions available from in-
clusive DIS with the large–Nc model calculation of the
polarized flavor asymmetries, we make quantitative pre-
dictions for the spin asymmetries in semi-inclusive pion,
kaon, and charged particle production. We discuss the sen-
sitivity of these observables to the flavor asymmetries of
the polarized antiquark distributions. With the quantita-
tive estimate of ∆ū(x)−∆d̄(x) from the chiral quark soli-
ton model we obtain a sizable contribution of the flavor
asymmetry to semi-inclusive spin asymmetries. Actually,
incorporating the effects of the large flavor asymmetry our
results fit well the recent HERMES data for spin asym-
metries in semi-inclusive charged hadron production [5].
We discuss the assumptions made in the analysis of the
HERMES data in [5], and argue that they are too restric-
tive and might have led to a bias in favor of a small fla-
vor asymmetry. We also make predictions for experiments
with the possibility to measure spin asymmetries of in-
dividual charged hadrons (π+, π−,K+,K−), which could
be feasible at HERMES or CEBAF.

2 Flavor asymmetry of the polarized
antiquark distribution in the large–Nc limit

Quark– and antiquark distributions in the large–Nc limit.
A very useful tool for connecting QCD with the hadronic
world is the theoretical limit of a large number of colors.
Qualitatively speaking, at large Nc QCD becomes equiv-
alent to a theory of mesons, with baryons appearing as
solitonic excitations [24]. The 1/Nc–expansion allows to
classify baryon and meson masses, weak and strong char-
acteristics in a model–independent way; usually the es-
timates agree surprisingly well with phenomenology. One
example are the isovector and isoscalar axial coupling con-
stants of the nucleon, which are of the order

g
(3)
A ∼ Nc, g

(0)
A ∼ N0

c , (1)

in qualitative agreement with the numerical values ex-
tracted from experiments, g(3)

A ≈ 1.25 and g
(0)
A ≈ 0.3.

The same technique has been applied to the parton dis-
tributions in the nucleon at a low normalization point [9].
There one finds that the isoscalar unpolarized and the
isovector polarized distributions of quarks and antiquarks
are leading in the 1/Nc–expansion, while the respective
other flavor combinations, the isovector unpolarized and
isoscalar polarized distributions, appear only in the next–
to–leading order. More precisely, at large Nc the distribu-
tions scale as

leading:

u(x) + d(x), ū(x) + d̄(x)

∆u(x) −∆d(x), ∆ū(x) −∆d̄(x)


 ∼ N2

c f(Ncx), (2)

subleading:

u(x) − d(x), ū(x) − d̄(x)

∆u(x) +∆d(x), ∆ū(x) +∆d̄(x)


 ∼ Nc f(Ncx), (3)

where f(y) is a stable function in the largeNc–limit, which
depends on the particular distribution considered. Note
that the large Nc–behavior of the polarized quark– and
antiquark distributions is related to that of the corre-
sponding axial coupling constants, (1) by the sum rules
for the first moments of these distributions (Bjorken and
Ellis–Jaffe sum rules).

It is interesting that the isovector polarized antiquark
distribution is parametrically larger than the isoscalar one.
While the 1/Nc–expansion is only a parametric estimate,
it is nevertheless an indication that ∆ū(x) −∆d̄(x) could
be also numerically large. This is indeed confirmed by
model calculations (see below).

Polarized vs. unpolarized antiquark flavor asymmetry.
We would like to briefly comment on the assumptions
about the polarized antiquark flavor asymmetry made in
the recent analysis of the HERMES data for semi-inclusive
DIS [5]. From the point of view of the 1/Nc–expansion
the flavor asymmetry of the polarized antiquark distribu-
tion is parametrically larger than that of the unpolarized
ones. Thus, the assumption in the fit of [5] of proportional
flavor asymmetry in the polarized and unpolarized anti-
quark distributions, namely ∆ū(x)/ū(x) = ∆d̄(x)/d̄(x),
is inconsistent with the 1/Nc–expansion and appears un-
natural. The consequences of this assumption can be seen
more clearly if one notes that it implies

∆ū(x) −∆d̄(x) =
[
ū(x) − d̄(x)

] ∆ū(x) +∆d̄(x)
ū(x) + d̄(x)

. (4)

The ratio of the isoscalar polarized to the isoscalar un-
polarized distribution on the R.H.S. is always less than
unity, which follows from the probabilistic interpretation
of the leading–order distributions considered here. Thus,
with the above assumption the polarized antiquark fla-
vor asymmetry can never be larger numerically than the
unpolarized one. Consequently, a fit under the assump-
tion ∆ū(x)/ū(x) = ∆d̄(x)/d̄(x) cannot be regarded as a
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real alternative to the reference fit assuming zero polar-
ized antiquark flavor asymmetry, ∆ū(x) −∆d̄(x) = 0. In
this sense it seems that the analysis of [5] contained an
implicit bias in favor of a small polarized antiquark flavor
asymmetry.

Model calculation of quark and antiquark distributions
at a low normalization point. In order to make quantita-
tive estimates of the parton distributions at a low normal-
ization point one needs to supplement the large–Nc limit
with some dynamical information. It is known that at low
energies the behavior of strong interactions is largely de-
termined by the spontaneous breaking of chiral symmetry.
A concise way to summarize the implications of this non-
perturbative phenomenon is by way of an effective field
theory, valid at low energies. Such a theory has been de-
rived “microscopically” within the framework of the in-
stanton description of the QCD vacuum, which provides
a dynamical explanation for the breaking of chiral sym-
metry in QCD [25]. It can be expressed in terms of an
effective Lagrangian describing quarks with a dynamical
mass, interacting with pions, which appear as Goldstone
bosons in the spontaneous breaking of chiral symmetry
(here x denotes the space–time coordinates):

Leff = ψ̄(x) [iγµ∂µ −M Uγ5(x)]ψ(x), (5)

Uγ5(x) ≡ 1 + γ5

2
U(x) +

1 − γ5

2
U†(x). (6)

Here U(x) is a unitary matrix containing the Goldstone
boson degrees of freedom, which can be parametrized as

U(x) =
1
Fπ

[σ(x) + iτaπa(x)] , σ2 + (πa)2 = F 2
π . (7)

(Fπ = 93 MeV is the weak pion decay constant). The ef-
fective theory is valid up to an ultraviolet cutoff, whose
value is of the order 600 MeV [25].

In the large–Nc limit the nucleon in the effective theory
defined by (5) is described by a classical pion field which
binds the quarks (chiral quark–soliton model) [26]. The
field is of “hedgehog” form; in the nucleon rest frame it is
given by

Ucl(x) = exp
[
i
xaτa

r
P (r)

]
, r ≡ |x|, (8)

where P (r) is called the profile function; P (0) = −π,
and P (r) → 0 for r → ∞. Nucleon states with definite
spin/isospin and momentum emerge after quantizing the
collective rotations and translations of the soliton. The
parton distributions in the nucleon at large Nc can be
computed by summing over the contributions of quark
single–particle states in the background field; the normal-
ization point is of the order of the ultraviolet cutoff of the
effective theory, µ ≈ 600 MeV (see [9,10] for details).

Gradient expansion of the isovector polarized antiquark
distribution. Analytic expressions for the parton distribu-
tions in the large–Nc nucleon can be obtained in the the-
oretical limit of large soliton size, where one can perform
an expansion of the sum over quark levels in gradients of

0

1

2

0 0.5 1
x

∆u(x) - ∆d (x)--
--d(x) - u(x)

Fig. 1. Solid line: The isovector polarized antiquark distribu-
tion at the low normalization point (µ = 600 MeV), as obtained
from the chiral soliton model of the nucleon (for details see the
text). Dashed line: The isovector unpolarized antiquark distri-
bution calculated in [12]

the classical pion field, (8) [9]. The isovector polarized an-
tiquark distribution in leading–order gradient expansion
is given by

∆ū(x) −∆d̄(x)

=
F 2

πMN

3

∫ ∞

−∞

dξ

2π
cosMNξx

ξ

×
∫
d3y tr

[
τ3(−i)Ucl(y + ξe3)U

†
cl(y)

]
=

4MN

3

∫ ∞

−∞

dξ

2π
cosMNξx

ξ

×
∫
d3y π3

cl(y + ξe3)σcl(y), (9)

where MN denotes the nucleon mass, e3 the three–
dimensional unit vector in the 3–direction, and τ3 the
isospin Pauli matrix.1 The reason why we are interested
in this theoretical limit is that it allows to make explicit
the dependence of the polarized antiquark distribution on
the classical chiral fields of the soliton. This will be useful
for the discussion in Sect. 3. Aside from this, comparison
with the result of exact numerical calculations shows that
the leading–order gradient expansion, (9), gives already a
very realistic numerical estimate of the isovector polarized
antiquark distribution [10].

Numerical result for ∆ū(x) − ∆d̄(x). In the numeri-
cal estimates of semi-inclusive asymmetries in Sect. 4 we
shall use not the gradient expansion formula, (9), but a
more accurate numerical estimate obtained by adding the
bound–state level contribution and using interpolation–
type formula to estimate the continuum contribution [9].
This result for the distribution is shown in Fig. 1. One sees

1 We remark that, when combined with the corresponding
gradient expansion expression for the isovector polarized quark
distribution, the first moment of (9) reproduces the well–known
expression for the gradient expansion of the isovector axial
coupling constant, g

(3)
A , of the large–Nc nucleon.
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that the flavor asymmetry of the polarized antiquark dis-
tribution is numerically larger than the unpolarized one
[12], in agreement with the fact that it is leading in the
1/Nc–expansion. Note that the unpolarized antiquark fla-
vor asymmetry calculated in this approach is in agreement
with the results of the analysis of the E866 Drell–Yan data
[17] as well as with the HERMES measurements in semi-
inclusive DIS [18] (for details, see [12,11,19]).

Including strangeness. For a realistic description of
semi-inclusive spin asymmetries one has to take into ac-
count the polarized distribution of strange quarks and
antiquarks in the nucleon. Within the large–Nc descrip-
tion of the nucleon it is possible to include strangeness
by extending the effective low–energy theory in the chi-
ral limit, (5) to three quark flavors and treating correc-
tions due to the finite strange current quark mass per-
turbatively. In this approach the nucleon is described by
embedding the SU(2) hedgehog, (8), in the SU(3) flavor
space, and quantizing its flavor rotations in the full SU(3)
flavor space. Flavor symmetry breaking can then be in-
cluded perturbatively by computing matrix elements of
symmetry–breaking operators between SU(3)–symmetric
nucleon states [27]. For our estimates here we limit our-
selves to the simplest case of unbroken SU(3) symmetry
(ms = 0). In this case collective quantization of the SU(3)
rotations of the soliton leads to a simple relation between
the flavor–octet and triplet polarized antiquark distribu-
tions, namely

∆ū(x) +∆d̄(x) − 2∆s̄(x)

=
3F −D

F +D

[
∆ū(x) −∆d̄(x)

]
. (10)

The value of F/D has been estimated in the chiral quark
soliton model [28]. When one regards the radius of the
soliton as a free parameter (in reality it is determined from
minimizing the energy of the soliton), the result for F/D
interpolates between the SU(6) quark model value (for
small soliton size), F/D = 2/3, and the value obtained in
the Skyrme model (for large soliton size), F/D = 5/9.2
Using the value F/D = 5/9 corresponding to the limit of
large soliton size, the ratio in (10) comes to 3/7. We shall
use the relation (10) with this value in our estimates of
semi-inclusive spin asymmetries in Sect. 4.

3 On the flavor asymmetry
of the polarized antiquark distribution
in the meson cloud picture

A widely used phenomenological model for the flavor
asymmetry of the unpolarized antiquark distributions in
the nucleon is the meson cloud picture [23]. Recently there
have been attempts to estimate also the polarized anti-
quark flavor asymmetry in this approach [20,21]. In partic-
ular, the authors of [20] obtained an estimate for ∆ū(x)−

2 It is interesting to note that in this approach the value
for F/D is one-to-one related to the isoscalar axial coupling
constant, g

(0)
A , see [28].

π+ π+

∆0n, 
pp

π− π−

∆++

pp
Fig. 2. The Sullivan mechanism contributing to the unpolar-
ized antiquark flavor asymmetry in the proton, ū(x) − d̄(x)

∆d̄(x) more than an order of magnitude smaller than the
result of the large–Nc model calculation, Fig. 1. This strik-
ing disagreement may lead to the impression that the
present theoretical understanding of the polarized anti-
quark flavor asymmetry is very poor. In this situation we
consider it helpful to briefly comment on the estimates
within the meson cloud picture. Specifically, we want to
show how the very small estimate obtained in [20] could
be reconciled with our large–Nc result. To avoid misun-
derstandings, we stress at this point that, in spite of many
superficial similarities, the meson cloud picture described
here differs in many crucial respects from the large–Nc ap-
proach (more on this below), so the two approaches should
not be confused.

The meson cloud picture of DIS off the nucleon as-
sumes that the nucleon can be described as a “bare” nu-
cleon, characterized by flavor–symmetric quark– and anti-
quark distributions, and a “cloud” of virtual mesons. The
flavor asymmetry of the antiquark distributions is then
attributed to processes in which the hard probe couples
to such a virtual meson. For instance, the sign of the ob-
served unpolarized antiquark asymmetry in the proton,
d̄(x) − ū(x) > 0, can qualitatively be explained by the
photon coupling to a pion in the “cloud” (Sullivan mech-
anism [22]), if one takes into account that the emission of
a π+ by the proton, with transition to a neutron or ∆0

intermediate state, is favored compared to that of a π−,
which is possible only by a transition to a ∆++ state, as
illustrated in Fig. 2.3

The simple Sullivan mechanism involving the pion
“cloud” does not contribute to the polarized asymmetry,
which has often been taken as an argument in favor of
the smallness of this asymmetry. Recently, Boreskov and
Kaidalov [21] made the interesting observation that at
small x a sizable polarized antiquark asymmetry is gener-
ated by the interference of the amplitudes for the photon
coupling to a pion and to a rho meson emitted by the nu-
cleon, as shown schematically in Fig. 3. This type of ex-
change corresponds to the leading Regge cut contributing
to the imaginary part of the high–energy photon–nucleon
scattering amplitude. Previously, Fries and Schäfer [20]
had considered the Sullivan–type contribution from po-
larized rho meson exchange to the polarized antiquark
asymmetry, ∆ū(x) − ∆d̄(x), at larger values of x (i.e.,
not restricted to small x), see Fig. 4.

3 For a discussion of the role of the πNN and πN∆ form fac-
tors in quantitative estimates of these contributions, see [29].
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π, ρ  interch.)(π+− ρ+−

∆0n, 
∆++

+

pp
Fig. 3. The pi–rho interference contributions to the isovector
polarized structure function at small x considered in [21]

ρ+− ρ+−

∆0n, 
∆++ pp

Fig. 4. The polarized rho meson exchange contributions to
∆ū(x) − ∆d̄(x) considered in [20]

π, σ  interch.)(π0 "σ" +

pp
p

Fig. 5. Schematic illustration of the “pi–sigma” interference
likely to give a large contribution to ∆ū(x) − ∆d̄(x) in the
meson cloud picture (for details, see the text)

They obtained a strikingly small contribution to
∆ū(x) −∆d̄(x), roughly two orders of magnitude smaller
than the result of the calculation in the large–Nc limit
shown in Fig. 1. It should be noted, however, that within
the meson cloud picture contributions of type of Fig. 4
are not special. In fact, one can obtain a contribution to
the polarized antiquark distribution already from the ex-
change of spin–0 mesons. To see this it is instructive to
take a look at the gradient expansion of the isovector po-
larized antiquark distribution in large–Nc limit, (9). Al-
though the fields in (9) are the classical chiral fields of the
soliton, and no direct interpretation of this expression in
terms of simple meson exchange diagrams is possible, it
can provide some qualitative insights as to which quantum
numbers can contribute to the polarized flavor asymme-
try. Equation (9) suggests that, in the language of the
meson cloud model, a contribution to the polarized an-
tiquark asymmetry at average values of x should come
already from the interference of pion and “sigma meson”
exchange, as illustrated in Fig. 5.

Given the large mass of the rho meson compared to the
pion, and the additional suppression due to need to have a
polarized rho meson, it is not difficult to imagine that this
interference contribution could give a much larger contri-

bution to ∆ū(x)−∆d̄(x) than the Sullivan–type polarized
rho meson exchange of Fig. 4.

It is difficult in QCD to meaningfully speak about ex-
changes of mesons other than pions, which play a special
role as Goldstone bosons of spontaneously broken chiral
symmetry, and as mediators of strong interactions at long
distances.4 In a “pure” pion cloud picture, contributions
of the type indicated in Fig. 5 should be referred to as
interference between the photon scattering off a flavor–
symmetric “bare” nucleon and a pion in the “cloud”.

We emphasize that the large–Nc results for the flavor
asymmetries of the antiquark distributions in the nucleon
cannot generally be interpreted as single meson exchange
diagrams such as Figs. 2–5. This can be seen from the fact
that the large–Nc limit of individual meson exchange di-
agrams typically gives rise to a wrong large–Nc behavior
of the resulting quark and antiquark distributions, differ-
ent from (2) and (3). The large–Nc approach avoids the
arbitrary separation of nucleon structure functions into
“core” and “cloud” contributions. At the same time, how-
ever, this approach retains the possibility of describing
genuine Goldstone boson exchange contributions at large
distances. For example, the large–Nc result for the helicity
skewed quark distribution correctly reproduces the singu-
larity found in this distribution in the chiral limit in QCD,
which can be attributed to Goldstone boson exchange [30].

4 Semi-inclusive spin asymmetries

In leading–order QCD the spin asymmetry of the cross
section for semi-inclusive production of a hadron of type
h in the deep–inelastic scattering of a virtual photon off a
hadronic target is given by

Ah
1 (x, z;Q2) =

∑
a e

2
a ∆qa(x,Q2) Dh

a(z,Q2)∑
b e

2
b qb(x,Q2) Dh

b (z,Q2)

×
[
1 +R(x,Q2)

1 + γ2

]
, (11)

where x is the Bjorken variable, Q2 = −q2 the photon
virtuality, and qa(x,Q2) and ∆qa(x,Q2), denote, respec-
tively, the unpolarized and polarized quark and antiquark
distributions in the target, at the scale Q2. The sum over
a, b implies the sum over light quark flavors as well as over
quarks/antiquarks:

a, b =
{
u, ū, d, d̄, s, s̄

}
.

Furthermore, Da(z,Q2) denotes the quark and antiquark
fragmentation functions, describing the probability for the
struck quark of type a to fragment into a hadron of type

4 It should be noted that even in the case of pure pion ex-
change, which can in principle be properly defined in the soft–
pion limit, the notion of meson exchange contributions to the
nucleon structure functions presents severe conceptual difficul-
ties, since in graphs of the type of Fig. 2 the typical momenta of
the exchanged pions are not small, but can run up to momenta
of the order of ∼ 1 GeV [29].
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h with fraction z of its longitudinal momentum. Finally,
in (11) R(x,Q2) = σL/σT is the usual ratio of the total
longitudinal to the transverse photon cross section, and
γ = 2xMN/

√
Q2 is a kinematical factor.

Instead of the spin asymmetry for fixed z, (11), one
usually considers the so-called integrated asymmetry,
which is defined as

Ah
1 (x;Q2) =

∑
a e

2
a ∆qa(x;Q2) Dh

a(Q2)∑
b e

2
b qb(x;Q2) Dh

b (Q2)

×
[
1 +R(x,Q2)

1 + γ2

]
, (12)

where

Dh
a(Q2) =

∫ 1

zmin

dz Dh
a(z;Q2). (13)

Here zmin > 0 is a cutoff which ensures that the ob-
served hadron was in fact produced by fragmentation of
the struck quark in the target (suppression of target frag-
mentation) [8].

Due to the presence of the (anti–) quark fragmenta-
tion functions in the expression for the asymmetries (11)
and (12) the quark and antiquark distributions in the tar-
get enter with different coefficients. This is different from
the inclusive spin asymmetry, which at the same level of
approximation is given by

A1(x,Q2) =
∑

a e
2
a ∆qa(x,Q2)∑

b e
2
b qb(x,Q2)

[
1 +R(x,Q2)

1 + γ2

]
. (14)

[Up to kinematical factors this quantity is equal to the ra-
tio of polarized to unpolarized structure functions,
g1(x,Q2)/F1(x,Q2)]. In the following it will be convenient
to rewrite the expression for the semi-inclusive asymmetry,
(12), in such a way as to explicitly separate the contribu-
tions of those combinations of parton distributions which
are known well from inclusive DIS, from others which dis-
criminate between quark and antiquark distributions. We
write

Ah
1 (x;Q2) =

[
Ah

1, u + Ah
1, d + Ah

1, s + Ah
1, 0

+ Ah
1, 3 + Ah

1, 8
]
(x;Q2), (15)

where the contributions are defined as (we omit the Q2–
dependence for brevity)

Ah
1, u(x) = Xh

u [∆u(x) +∆ū(x)]

(analogously for d, s), (16)

Ah
1, 0(x) = Xh

0
[
∆ū(x) +∆d̄(x) +∆s̄(x)

]
, (17)

Ah
1, 3(x) = Xh

3
[
∆ū(x) −∆d̄(x)

]
, (18)

Ah
1, 8(x) = Xh

8
[
∆ū(x) +∆d̄(x) − 2∆s̄(x)

]
. (19)

The coefficientsXh
u , . . . X

h
8 are given by the following com-

bination of quark charges and quark fragmentation func-
tions:

Xh
u (x) =

e2uD
h
u

Y
(analogously for d, s), (20)

Xh
0 =

1
3Y

[−e2u(Dh
u −Dh

ū) − e2d(D
h
d −Dh

d̄ )

−e2s(Dh
s −Dh

s̄ )
]
, (21)

Xh
3 =

1
2Y

[−e2u(Dh
u −Dh

ū) + e2d(D
h
d −Dh

d̄ )
]
, (22)

Xh
8 =

1
6Y

[−e2u(Dh
u −Dh

ū) − e2d(D
h
d −Dh

d̄ )

+2e2s(D
h
s −Dh

s̄ )
]
, (23)

with

Y =
1 + γ2

1 +R(x,Q2)

∑
a

e2a qa(x;Q2) Dh
a(Q2). (24)

The terms Ah
1, u, A

h
1, d and Ah

1, s contain the contributions
of the sum of quark and antiquark distributions, which ap-
pear also in the inclusive polarized spin asymmetry (polar-
ized structure functions), (14), and can therefore be mea-
sured independently in DIS. [Actually, in DIS with proton
or nuclear targets one is able to measure directly only two
flavor combinations of these three distributions; the third
one can be inferred using SU(3) symmetry arguments.]
The term Ah

1, 0 in (15) contains the flavor–singlet polar-
ized antiquark distribution. The terms Ah

1, 3 and Ah
1, 8,

finally, are proportional to the flavor–nonsinglet (triplet
and octet, respectively) combinations of the polarized an-
tiquark distributions, which do not contribute to inclusive
DIS and are therefore left essentially unconstrained in the
parametrizations of parton distributions derived from fits
to inclusive data [2].

The decomposition (15) now allows us to consistently
combine the information available from inclusive DIS, con-
tained in the standard parametrizations of polarized par-
ton distributions, with the results of our model calcula-
tion of the flavor asymmetries of the antiquark distribu-
tions, when computing the total semi-inclusive spin asym-
metry. To evaluate the numerators of the contributions
Ah

1, u, A
h
1, d, and Ah

1, s we use the GRSV LO parametriza-
tions of the distributions ∆u(x)+∆ū(x), ∆d(x)+∆d̄(x),
∆s(x) + ∆s̄(x) [2].5 For the contribution Ah

1, 0 involving
the flavor–singlet antiquark distribution, ∆ū(x)+∆d̄(x)+
∆s̄(x), we also use the GRSV LO parametrization, which
is in good agreement with the result of the calculation in
the chiral quark–soliton model [13]. To estimate the contri-
butions of the flavor–asymmetric antiquark distributions
to the spin asymmetry, Ah

1, 3 and Ah
1, 8, we take the results

of the calculation in the chiral quark–soliton model, cf.
Fig. 1 and (10), evolved from the scale of µ2 = (600 MeV)2
up to the experimental scale. Note that in leading order
∆ū(x) −∆d̄(x) and ∆ū(x) +∆d̄(x) − 2∆s̄(x) do not mix
with the total distributions under evolution [we neglect
SU(3)–symmetry breaking effects due to the finite strange
quark mass in the evolution]. Finally, to evaluate the de-
nominators in (20)–(23), we use the GRV LO parametriza-

5 To be consistent with our treatment of SU(3) flavor sym-
metry breaking in the model calculation we take the so-called
“standard” scenario.
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Fig. 6. The inclusive spin asymmetry, (14), evaluated with the
GRSV/GRV parametrization for the polarized/unpolarized
parton distributions, at Q2 = 2.5 GeV2. Solid line: (14)
evaluated without the explicit factor [1 + R(x, Q2)]. Dashed
line: same as solid line, but explicitly including the factor
[1 + R(x, Q2)]. Dots: HERMES data from [5]

tion of unpolarized parton distributions [31], which agrees
well with the model calculations of [9,10,12,13].

We emphasize that with the above “hybrid” set of po-
larized parton distributions we automatically fit all in-
clusive data, since the GRSV parametrization was deter-
mined from fits to the structure function data. In partic-
ular, the GRSV parametrization describes well the HER-
MES data for the inclusive spin asymmetry, (14), as can
be seen from Fig. 6.6 Note that the HERMES data are in
good agreement with the SLAC E143 data for the inclu-
sive spin asymmetry [32].

Spin asymmetries in charged pion production. In order
to determine the contributions of the various combinations
of polarized quark and antiquark distributions to the semi-
inclusive spin asymmetry, (12), we need to evaluate the co-
efficients Xh

u , . . . X
h
8 , (20)–(23), using a set of quark and

antiquark fragmentation functions. Like the parton distri-
butions, the fragmentation functions are process–
independent quantities, which can in principle be deter-
mined from a variety of hard processes with hadronic fi-
nal states, such as e+e− annihilation, or in semi-inclusive
hadron production in unpolarized DIS. Unfortunately, ex-
perimental knowledge of fragmentation functions is still
comparatively poor. This applies in particular to the so-
called unfavored fragmentation functions, which we need
to study the influence of flavor asymmetry in the antiquark
distribution, see (22) and (23). The low–scale parametriza-
tions of unpolarized quark and antiquark fragmentation
functions of Binnewies et al., which fit variety of e+e−
annihilation and semi-inclusive DIS data, describe only
fragmentation into positively and negatively charged par-
ticles combined, which is not sufficient for our purposes.

6 The GRSV parametrization was derived by fitting to the
ratio (14) including the factor [1+R(x, Q2)], so that this factor
is contained in the polarized parton distribution functions and
should not be included explicitly when evaluating (14). The
effect of this factor is shown in Fig. 6.

Table 1. Rows 1 and 2: The coefficients (20)–(23) for π+ and
π− production, evaluated with the HERMES fragmentation
functions [8] for zmin = 0.2. Rows 3 and 4: Same for charged
hadron production. The kaon and proton fragmentation func-
tions have been taken from the EMC measurements [7] (details
see text). Rows 5 and 6: Same for kaon production only

Xh
u Xh

d Xh
s Xh

0 Xh
3 Xh

8

h = π+ 0.200 0.029 0.029 -0.021 -0.053 -0.011
π− 0.115 0.050 0.029 0.021 0.053 0.011

h = h+ 0.277 0.040 0.035 -0.037 -0.077 -0.023
h− 0.140 0.056 0.043 0.037 0.077 0.023

h = K+ 0.049 0.004 0.004 -0.008 -0.017 -0.008
K− 0.016 0.004 0.012 0.008 0.017 0.008

The π+ and π− fragmentation functions separately have
been extracted at low Q2 from semi-inclusive pion pro-
duction at HERMES [8]. The number of independent pion
fragmentation functions is reduced by isospin and charge
conjugation invariance:

Dπ+
u = Dπ+

d̄
= Dπ−

d = Dπ−
ū ≡ D, (25)

Dπ+
d = Dπ+

ū = Dπ−
u = Dπ−

d̄
≡ D̃, (26)

where D and D̃ are called, respectively, favored and un-
favored fragmentation function. In addition, in [8] it was
assumed that the strange quark fragmentation function
into pions is approximately equal to the unfavored frag-
mentation function for u and d quarks:

Dπ+
s = Dπ−

s̄ ≈ Dπ+
s̄ = Dπ−

s ≈ D̃. (27)

With these assumptions we can compute the integrals (13)
for h = π+, π− using the HERMES fragmentation func-
tions (extraction method 1, corrected for 4π acceptance)
[8]. The values of the coefficients Xπ±

u , . . . Xπ±
8 integrals

obtained with a cutoff zmin = 0.2 (the value used in the
analysis of HERMES charged hadron data [5]) are given in
rows 1 and 2 of Table 1. The numerical values of the coeffi-
cients reveal two things: First, the dominant contribution
to the charged hadron asymmetry comes from the sum of
the polarized u–quark and antiquark distributions in the
target, ∆u(x)+∆ū(x), which is a consequence of the large
squared charge of the u–quark. Second, among the vari-
ous flavor combinations of the antiquark distributions the
isovector one, ∆ū(x)−∆d̄(x) enters with the largest coef-
ficient — a fortunate circumstance for attempts to extract
this distribution from the data.

The results for the spin asymmetry in semi-inclusive
π+ and π− production are shown in Fig. 7. The dashed
lines show the results obtained taking into account only
the contributions Aπ±

1, u, A
π±
1, d, A

π±
1, s and Aπ±

1, 0 to the spin
asymmetry, (15), i.e., what would be obtained without
flavor asymmetry in the polarized antiquark distribution
of the proton. The contributions Aπ±

1, 3, proportional to
∆ū(x) −∆d̄(x), are shown by the dotted lines. The total
results for the asymmetries, including all contributions,
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π− Fig. 7. The spin asymmetries for π+ and
π− production in semi-inclusive DIS off
the proton (Q2 = 2.5 GeV2, zmin = 0.2).
Dashed lines: Sum of contributions Aπ+

1, u,
Aπ+

1, d, Aπ+
1, s, and Aπ+

1, 0 (and respectively for
π−), cf. (15). Dotted lines: Contributions
Aπ+

1, 3 and Aπ−
1, 3, respectively, proportional

to the flavor asymmetry ∆ū(x) − ∆d̄(x) in
the target, evaluated with the distribution
shown in Fig. 1. Solid lines: Total results,
including the effect of ∆ū(x)−∆d̄(x). The
contributions Aπ+

1, 8 and Aπ−
1, 8 are very small

and therefore not shown separately

are shown by the the solid lines. [The contributions Aπ±
1, 8

are very small, of the order of 10% of Aπ±
1, 3, and not shown

separately.] One sees that in both cases the effect of the
flavor asymmetry of the antiquark distribution is notica-
ble.

Spin asymmetries in charged hadron production and
comparison with the HERMES data. We now turn to the
spin asymmetries in charged production, which have been
measured by the SMC [4] and HERMES [5] experiments.
Unfortunately, no complete set of quark fragmentation
functions for charged hadrons (K+,K−, p, p̄) at the HER-
MES scale (Q2 = 2.5 GeV2) is available. We therefore take
recourse to the older EMC results for the fragmentation
functions [7], in which positively and negatively charged
hadrons were separated. These data have been taken at a
higher scale of Q2 = 25 GeV2. Since it turns out that the
dominant contribution to the semi-inclusive spin asymme-
try for production of charged hadrons comes from the pi-
ons, we combine the HERMES result for the pion fragmen-
tation functions [8] with the EMC fragmentation functions
for kaons and protons [7], ignoring the scale dependence of
the kaon and proton fragmentation functions, which any-
way give a small contribution.7 Again, isospin and charge
conjugation allow us to write:

DK+
u = DK−

ū ≡ DK , (28)

DK+
d = DK−

d̄
≡ D̃K , (29)

Dp
u = Dp̄

ū ≡ Dp, (30)

Dp̄
u = Dp

ū ≡ D̃p. (31)

Furthermore, following the analysis in [7], we shall assume
that

DK−
s = DK+

s̄ ≈ DK , (32)

DK+
s = DK−

s̄ ≈ D̃K , (33)
7 In principle the evolution equations for fragmentation func-

tions [33,34] would allow us to parametrize the EMC results in
terms of fragmentation functions at a lower scale; however, in
order to do so consistently we would need also the gluon frag-
mentation functions at the higher scale, which has not been
measured by EMC.

Dp
d = Dp̄

d̄
≈ Dp, (34)

Dp
s = Dp̄

s̄ ≈ Dp

d̄
= Dp̄

d = D̃p. (35)

With these assumptions all relevant fragmentation func-
tions for h+ ≈ π++K++p and h− ≈ π− +K− + p̄ can be
estimated in terms of the six functions D, D̃,DK , D̃K , Dp

and D̃p. Evaluating the integrals with zmin = 0.2 (the
cutoff used in the analysis of HERMES data [5]) we ob-
tain the values shown in rows 3 and 4 of Table 1. One
sees that the values are not too different from those ob-
tained for π+ and π− production; only the sensitivity to
the strange quark distributions has increased somewhat
due to the inclusion of kaon production.

In Fig. 8 we show the results for the spin asymmetries
in h+ and h− production. As in Fig. 7 for π+ and π− we
plot the asymmetry that would be obtained without flavor
asymmetry of the polarized antiquark distribution in the
target (Ah±

1, u +Ah±
1, d +Ah±

1, s +Ah±
1, 0), the contributions Ah±

1, 3

and Ah±
1, 8 containing the effect of the flavor asymmetry,

and the total result.
A preliminary comparison of the theoretical results for

Ah±
1 shows that the spin asymmetries computed includ-

ing the effects of ∆ū(x) − ∆d̄(x) (solid lines in Fig. 8)
are consistent with the HERMES [5] and SMC [4] data.
The accuracy of the present data, in particular for Ah−

1 ,
seems not to be sufficient for a definite choice between the
theoretical results obtained with (solid lines) and without
(dashed lines in Fig. 8) the flavor asymmetry of the polar-
ized antiquark distribution. Also, one should be aware that
there are several sources of uncertainty in our theoretical
predictions. The greatest uncertainty comes from our im-
perfect knowledge of the fragmentation function, mostly
from the pion fragmentation functions. In the analysis of
[8], significant corrections were applied to the measured
fragmentation functions in order to compensate for the
acceptance of the HERMES detector. (We use the 4π–
corrected fragmentation functions in our above estimates.)
A full error analysis would require keeping track of the sys-
tematic error in the fragmentation functions and is outside
the scope of this paper. One should consider the possibil-
ity of changing the above analysis such as to be able to
work directly with the fragmentation functions specific to
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Fig. 8. The spin asymmetries for h+ and
h− production in semi-inclusive DIS off
the proton (Q2 = 2.5 GeV2, zmin = 0.2).
Dashed lines: Sum of contributions Ah+

1, u,
Ah+

1, d, Ah+
1, s, and Ah+

1, 0 (and respectively for
h−), cf. (15). Dotted lines: Contributions
Ah+

1, 3 and Ah−
1, 3, respectively, proportional

to the flavor asymmetry ∆ū(x) − ∆d̄(x) in
the target, evaluated with the distribution
shown in Fig. 1. Dash–dotted line: Contri-
butions Ah+

1, 8 and Ah−
1, 8, respectively. Solid

lines: Total results, including the effect
of flavor asymmetry of the polarized an-
tiquark distribution. Open Squares: SMC
data [4]. Filled Circles: HERMES data [5]
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Fig. 9. The spin asymmetries for K+ and
K− production in semi-inclusive DIS off
the proton (Q2 = 2.5 GeV2, zmin = 0.2).
Dashed lines: Sum of contributions AK+

1, u ,
AK+

1, d , AK+
1, s , and AK+

1, 0 (and respectively for
K−), cf. (15). Dotted lines: Contributions
AK+

1, 3 and AK−
1, 3 , respectively, proportional

to the flavor asymmetry ∆ū(x) − ∆d̄(x) in
the target, evaluated with the distribution
shown in Fig. 1. Note the large contribu-
tion in K− production. Dash–dotted line:
Contributions AK+

1, 8 and AK−
1, 8 , respectively.

Solid lines: Total results, including the ef-
fect of flavor asymmetry of the polarized
antiquark distribution

the HERMES detector, avoiding the 4π corrections. It is
conceivable that in this way one could significantly reduce
the systematic error in the fragmentation functions.

Recently, Morii and Yamanishi have attempted to ex-
tract ∆ū(x) − ∆d̄(x) from the data for polarized semi-
inclusive asymmetries by combining data taken with pro-
ton and Helium targets [35]. (It was shown in [19] that the
asymmetry calculated in the chiral quark–soliton model is
consistent with their bounds obtained in [35].) Since in the
case of the HERMES experiment the statistics of the He-
lium data is significantly worse than for the proton, this
combination of data results in a loss of accuracy. Also,
this approach requires accurate compensation for nuclear
binding effects. In contrast, our method of analysis relies
on proton data only.

Spin asymmetries in charged kaon production. It is in-
teresting to consider separately also the spin asymmetries
in the production of charged kaons only. In particular, K−
cannot be produced by favored fragmentation of either u
or d quarks in the target, which makes for the bulk con-
tribution to the semi-inclusive spin asymmetry in π± or
h± production. In this case one might expect a large sen-
sitivity of the spin asymmetry to the flavor asymmetries
of the polarized antiquark distributions. For a rough es-
timate we can use the EMC fragmentation functions to
evaluate the coefficients (20)–(23) for K+ and K−; the

results are shown in rows 5 and 6 of Table 1. The con-
tributions to the spin asymmetries are shown in Fig. 9.
One sees that, in particular in the case of K− production,
the contribution proportional to∆ū(x)−∆d̄(x) in the pro-
ton is large. Thus, semi-inclusive charged kaon production
could be a sensitive test of the flavor decomposition of the
antiquark distribution in the nucleon.

5 Conclusions and outlook

Starting from the observation that the 1/Nc–expansion
predicts large flavor asymmetries of the polarized anti-
quark distributions, and the quantitative estimates for
∆ū(x)−∆d̄(x) and∆ū(x)+∆d̄(x)−2∆s̄(x) obtained from
the chiral quark–soliton model, we have explored several
consequences of a large flavor asymmetry of the polarized
antiquark distributions.

On the theoretical side, we have argued that the very
small value for the polarized antiquark flavor asymmetry
obtained from polarized rho meson exchange in the me-
son cloud picture [20] does not rule out a large asymmetry,
since polarized rho meson exchange is by far not the dom-
inant contribution to ∆ū(x) − ∆d̄(x) in that approach.
Comparison with the large–Nc result suggests that, in the
terms of the meson cloud model, a large contribution is
likely to come from the interference of pion and “sigma
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meson” exchange. It could be interesting to explore this
qualitative suggestion in more detail within the meson
cloud picture.

As to experimental consequences, we have found that
the large flavor asymmetry predicted by the chiral quark
soliton model is consistent with the recent HERMES data
on spin asymmetries in semi-inclusive charged hadron pro-
duction. Our conclusions are based on the presently avail-
able information on quark and antiquark fragmentation
functions; however, to the extent that we have explored
it, they seem to be robust with regard to the systematic
uncertainties in the fragmentation functions. We do not
claim that at the present level of accuracy the HERMES
data for Ah±

1 necessitate a large flavor asymmetry of the
antiquark distribution in the proton. However, assuming
a large flavor asymmetry we obtain a good fit to the data.
In this sense the HERMES results should not be seen as
evidence for a small flavor asymmetry of the polarized
antiquark distribution. Also, we have argued that the as-
sumption ∆ū(x)/ū(x) = ∆d̄(x)/d̄(x) made in the analysis
of the HERMES data in [5] artificially limits the contribu-
tions from the polarized antiquark flavor asymmetry, and
thus does not constitute a real alternative to the reference
fit assuming zero flavor asymmetry.

At present, one source of uncertainty in our theoretical
results are the systematic errors in the HERMES quark
and antiquark fragmentation functions introduced by the
corrections for 4π acceptance. It would be worthwhile to
investigate if not the above analysis could be carried out
directly with the fragmentation functions for HERMES
acceptance, which could considerably reduce the system-
atic error.

We have shown that the flavor asymmetry of the po-
larized antiquark distribution makes a particularly large
contribution to the spin asymmetries in charged kaon pro-
duction. Such measurements could be an interesting op-
tion with detectors which allow discrimination between
pions and kaons in the final state, e.g. at HERMES or
CEBAF.
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